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Merkel cell polyomavirus (MCV), discovered in 2008, is clonally

integrated in �80% Merkel cell carcinoma (MCC). MCV is a

common skin flora and initiates cancer in susceptible hosts

only after it acquires a precise set of mutations that render it

replication incompetent. Both MCV large and small T proteins

promote cancer cell survival and proliferation. Large T targets

pocket proteins regulating cell cycle transit while small T

activates cap-dependent translation critical for cancer cell

growth. These findings already have led to new diagnostics and

clinical trials to target MCV-induced survivin and to promote

antitumor immunity. In four years, the cause, diagnosis and

therapy for an intractable cancer has been changed due to the

molecular discovery of MCV.
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Introduction
Merkel cell polyomavirus (MCV or MCPyV) is the new-

est member of the surprisingly small group of viruses

known to cause human cancer [1�]. It is also one of seven

new human polyomaviruses discovered in the past five

years [2–5,6��,7�,8,9,10]. In a very short time, newly

identified viral markers and serologic assays for MCV

infection have been developed that improve Merkel cell

carcinoma (MCC) diagnosis. Discovery of MCV has

already led to studies on a precise molecular-targeted

therapy based on rational drug testing that may alter

clinical treatment for this often-intractable disease

[11��]. Work on immune-based therapies to complement

existing cancer treatments is being explored as well

[12,13]. MCV has also helped us understand a new cancer

mechanism in which mutations to a typically harmless

component of our skin flora—rather than the cancer cell

genome itself—contributes to tumor formation [14�].
Taken together, this recent research led to the WHO

International Agency for Research on Cancer (IARC) to
www.sciencedirect.com 
classify MCV as a group 2A carcinogen [15]. These recent

advances all stem from isolation of a small piece of RNA

from a Merkel cell carcinoma tumor four years ago [6��].

Polyomaviruses have formed much of the basis for our

understanding of the molecular biology of cancer. Animal

polyomavirus tumor (T) antigens led to discoveries of p53

and PI3K as well as other oncogene/tumor suppressor

signaling pathways [16,17]. They have also contributed to

uncovering fundamental cellular processes such as

protein nuclear localization signals and mammalian

DNA replication [16,17]. MCV, which is clonally inte-

grated into the MCC cell genome, adds new insights into

the mechanisms of polyomavirus-induced cancers. In

contrast to small T (sT) protein of other polyomaviruses,

MCV sT is the major transforming oncogene, and exerts

its tumor promoting effects at least partly through target-

ing of the cap-dependent translation regulator, 4E-BP1

[18�]. Similar to other polyomavirus large T (LT)

proteins, MCV LT targets cellular pocket proteins

(pRB, p107 and p130) [14�] but one critical consequence

of this is the activation of survivin, an important mediator

for cancer cell proliferation [11��].

Discovery of MCV
Merkel cell carcinoma is an uncommon but aggressive

primary cutaneous neoplasm having a poor prognosis once

disseminated [19,20]. It arises from mechanoreceptor

Merkel cells sparsely distributed in the basal layer of

the epidermis [21,22]. Similar to other skin cancers,

prolonged UV exposure is a risk factor for MCC, as is

advanced age, and the risk for MCC increases dramatic-

ally in persons 50 years or older [23]. The risk for MCC is

also strikingly associated with loss of immune compe-

tence; the risk of MCC is 13-fold higher in AIDS patients

and 10-fold higher among organ transplant recipients than

in the general population [24�], an epidemiologic pattern

reminiscent of Kaposi’s sarcoma and other cancers having

a viral etiology [25].

Population-based studies from the United States and

Europe reveal a rising MCC incidence [20,26,27�,28,29]

and the public health burden of this cancer is generally

underappreciated. Approximately 1500 MCC cases occur

annually in the US with MCC being responsible for more

deaths than chronic myelogenous leukemia [30�]. Other

cancers, such as chronic lymphocytic leukemia, basal cell

carcinoma and squamous cell carcinoma [29,31–36], occur

in conjunction with MCC at unexpectedly high rates.

None of these secondary cancers have been robustly

linked to MCV infection and reports vary as to whether
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MCV might also be present in these non-MCC tumors

[37�,38–44].

A focused search for oncogenic viruses in MCC was

initiated by Feng et al. in 2007 [6��]. This approach,

called digital transcriptome subtraction (DTS), uses

high-throughput complementary DNA (cDNA) sequen-

cing and in silico subtraction of human sequences from

tumor transcriptome to isolate candidate viral sequences

[6��,45]. Two MCV transcript sequences were found in

the DTS analysis of MCC tumors, one of which had high

sequence homology to a primate lymphotropic polyoma-

virus sequence [46].

MCV was initially found to be clonally integrated into the

human genome in tumors [6��]. No preferential integ-

ration sites have been found so far [6��,47,48�,49]. In

addition to disruption of the viral genome as a result of

integration, viral sequences revealed a second peculiar

feature for tumor-associated MCV. All tumor isolates

possessed truncating mutations that deleted the origin-

binding or helicase domains of the virus’ LT protein

[14�]. Additionally, tumor isolates have been found pos-

sessing mutations in the noncoding origin sequence [50]

and VP1 structural genes [51] that prevent replication and

virion formation. This suggests that there is a strong

selection pressure to eliminate MCV replication within
Figure 1

Merkel cell polyomavirus virions. Top panel shows typical Merkel cell polyom

comparison, lower panel reveals assembled MCV virus-like particles (VLP), g

serologic assays.Modified from Feng et al., PLoS ONE, 2011.
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MCC and consistent with the notion that virus-induced

tumors generally do not support productive (‘lytic’) viral

replication [1�,50,51]. Active virus replication activates

innate immune signaling and, in the case of MCV, unli-

censed viral origin firing from the viral-human integrant

will generate fragmented DNA [14�], which will kill the

nascent tumor cell.

MCV virology
MCV is a non-enveloped, double-stranded DNA virus

belonging to the mammalian genus Orthopolyomavirus
[52]. MCV has been difficult to cultivate in the laboratory

as a natural infection but several attempts have been

made to produce infectious MCV molecular clones [53–
55]. In each case, primary low-level virion production can

be achieved (Figure 1) but secondary transmission to

uninfected cells has not been successful. While early

electron microscopy studies suggested that MCV virions

might be seen in some MCC tumors [56], the weight of

evidence now indicates that structural proteins required

for encapsidation are not expressed in MCC tumors and

encapidated viruses seen in tumors are likely to be

coincidental [57,58].

MCV genes and genome
The MCV genome displays features found in other

polyomaviruses. It has a �5.4 kb genome divided into
100 nm
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avirus particles produced by transfection of whole genome in 293 cells. In

enerated by expression of VP1 and VP2 genes alone, that can be used in
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early and late gene regions by a noncoding regulatory

region (NCRR). The early region encodes for alterna-

tively spliced, overlapping RNAs that generate large T

(LT), small T (sT) and 57kT antigens (analogous to the

SV40 17-kT antigen [59]), and share a common 78 amino

acid N terminus encoded by exon1 (Figure 2) [14�].
Mutations to the T antigen region that arise in tumor-

derived MCV (substitutions, frameshift, missense, inser-

tions and deletions) [14�,49] truncate LT and 57kT

proteins but do not affect full length sT protein trans-

lation [14�]. Despite MCV’s similarity to murine poly-

omavirus (MPyV), no middle T antigen has been

identified.

MCV LT antigen retains conserved domains that are

present across different polyomaviruses, such as DnaJ

and LXCXE retinoblastoma (Rb) protein binding motifs

[16,60], as well as the origin binding and helicase/ATPase

regions needed for viral replication [14�]. Tumor-specific

mutations spare the LXCXE domain (aa 212–216), indi-

cating its importance to MCC tumorigenesis

[14�,47,48�,49,61]. Similar to other polyomaviruses,

MCV LT interaction with RB1 requires the LXCXE

domain [14�,47,48�,61], which is expected to deregulate

E2F-related gene transcription. Direct evidence for the

requirement of this motif for cell survival, has been
Figure 2
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generated by complementing T antigen knockdown

experiments in MCC cell lines by Houben et al. [62].

One unexpected consequence of LT targeting of pocket

proteins is the specific activation of survivin transcription,

a finding that has been exploited in therapeutic studies

[11��].

MCV LT protein contains a nuclear localization signal

(NLS) at aa 277–280 (RKRK) [61], resulting in a typical

nuclear LT localization pattern for most cell cultures and

tumors [37�] (Figure 3). Signature tumor truncation

mutations can disrupt this domain resulting in diffuse

nuclear and cytoplasmic distribution of LT [37�,54]. A

novel interaction, so far only found for MCV LT, between

human Vamp6 protein (Vps39) and the MCV unique

region in LT adjacent to its Rb binding motif [54], causes

this cytoplasmic protein to relocalize to the nucleus. The

function(s) of Vam6p relocalization in MCC tumors is

unknown; evidence suggests that in non-tumor MCV

infections, LT targeting of Vam6p may regulate MCV

replication [54].

The MCV early region mRNA also splices to produce a

57kT antigen (predicted size = 47 kDa [14�]) that is

identical to large T protein but lacking an origin-binding

domain. Similar multiply spliced T antigen isoforms
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ative splicing of the T antigen gene: Large T (LT), small T (sT) and 57kT

eins. Major conserved MCV T antigen motifs (top, base pair positions,

ed region; RB, retinoblastoma-binding; PP2A, protein phosphatase 2A-

nd 57kT encode a MCV-unique region (MUR) that includes the Vam6p/

o the RB-binding domain and disrupt the helicase activity of LT but do not

o MCV tumor strains (MCV350 and MCV339) are shown.
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Figure 3
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Merkel cell polyomavirus large T (left) and small T (right) antigen expression in MCC tumors. MCV large T antigen usually shows distinct nuclear

expression in MCC cells (dependent on an intact nuclear localization signal that can be deleted in some tumors), while MCV small T antigen displays

both nuclear and cytoplasmic staining patterns. Only tumor cells show strong positivity with antibody staining, and not the surrounding non-tumor

tissues.
occur in other polyomaviruses [14�,17,59] and their func-

tions remain poorly understood.

MCV sT is encoded by a read-through of the exon1-

intron1 splice donor site [14�]. In tissue sections of

tumors, MCV sT is more commonly expressed than

MCV LT antigen (Figure 3) [18�]. Knockdown studies,

however, reveal that both MCV sT and LT antigens are

independently required for MCC tumor cell survival and

proliferation [18�,63�] and both are likely to contribute to

tumorigenesis.

In polyomaviruses, LT primarily target tumor suppressor

pathways and sT activates Akt-mTOR signaling by bind-

ing to protein phosphatase 2A (PP2A) [64], a pathway

which has been found to be critical for tumor cell survival

in many types of genetic cancers [65]. For SV40, LT is a

potent in vitro transforming oncoprotein while sT plays a

supporting role and is not transforming alone [16,64,66].

By contrast, MCV sT is the primary transforming onco-

protein in vitro while MCV LT has no effect in focus

formation and soft agar assays [18�].

SV40 sT acts to inhibit Akt dephosphorylation by binding

the cellular protein phosphatase 2A (PP2A) A and C

subunits while displacing its B subunit [64,67,68].

MCV sT similarly binds PP2A, but this interaction is

dispensable for MCV sT-induced transformation [18�].
MCV sT instead promotes hyperphosphorylation of 4E-

BP1, a downstream target of mTORC1 kinase through

interaction with unidentified cellular partner protein(s).

MCV sT thus may be a useful tool to dissect cap-de-

pendent regulation of 4E-BP1 in cancer signaling.

The MCV late region encodes 3 capsid proteins (VP1,

VP2 and VP3), expressed after the onset of viral DNA
Current Opinion in Virology 2012, 2:489–498 
replication. These structural proteins, when expressed in

uninfected cells, self-assemble into a �55-nm diameter

icosahedral viral particles that can be harvested as antigen

for serological assays [57,69]. MCV does not encode an

agnoprotein [70,71] or VP4 [72] found in some polyoma-

viruses. Formally, little is known about the kinetics and

regulation of MCV late gene expression because virus

replication studies have been limited. Comparison of late

gene expression for the MCV-HF molecular clone to a

replication defective mutant clone suggests that MCV

late gene expression depends on active DNA replication

of the viral genome, analogous to late gene expression

among large DNA viruses (e.g. herpesviruses) [54]. MCV

encodes an miRNA, MCV-mir-M-5p that is generated

from long RNAs transcribed late in infection [73�,74]. It is

antisense to early transcripts (regions 1217–1238) and may

behave similar to the SV40 miRNA in negatively regulat-

ing early gene expression during late phases of virion

encapsidation [75].

The NCRR region of MCV separates early and late gene

regions and contains a core 71-bp origin sufficient to

initiate DNA replication. This core sequence is com-

prised of an AT-rich tract involved in DNA melting and a

region containing 8 GAGGC pentanucleotide sequences

(PS) that are bound by the MCV LT origin-binding

domain at the initiation of replication [14�,50,76]. Four

of these PS sites are absolutely required for virus replica-

tion [50], including a core of three PS that form an

interacting helicase complex seen in crystallization stu-

dies [76]. Unlike SV40, but similar to JCV, MCV origin

replication is highly activated by coexpression of MCV

sT proteins [50,54]. Early evidence suggested that this

may be due to sT sequestration  of PP2A, but this has

subsequently been shown to be PP2A-independent.

The NCRR also contains bidirectional transcriptional
www.sciencedirect.com
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promoters and regulatory elements for early and late viral

gene expression.

MCV epidemiology
Similar to most of the human polyomaviruses, MCV is a

near-ubiquitous infection of adults. MCV seroassays

based on late structural capsid protein VP1 reveal

MCV prevalence of 60–80% in adults [69,77–79]. Both

VLP-based EIA and neutralization tests demonstrate that

conformational epitopes are important for the immuno-

dominant antibody response after infection [57,69], and

that assembled particles are generally a more sensitive

serologic reagent than purified VP1 recombinant protein.

Seroconversion to MCV IgG positivity is generally stable

and antibodies can be detected for decades after primary

infection [80�]. Among persons with MCC, antibody titers

to MCV VLP are significantly elevated giving evidence

that an episode of viremia probably precedes tumor de-

velopment [57,69].

Primary MCV infection, at least among adults, is gener-

ally asymptomatic [80�]. MCV antibodies are detected in

children with the prevalence of infection increasing with

age [69,77,78,81]. In contrast to VLP, healthy adults do

not generally have antibody responses to MCV T antigens

[69,82�], although T antigen antibodies can also develop

in a subset of MCC patients and have been used to

monitor tumor recurrence or dissemination [69,82�].

Serologic and molecular studies indicate that MCV is a

persistent and life-long infection [7�]. MCV DNA is

predominantly found in skin [7�,61,83–85] but can be

detected in a variety of tissues including, respiratory tract

samples and nasopharyngeal aspirates [86–89], saliva [84],

gut [27�,90], lymphoid tissue [27�,37�], urine [91–94] and

whole blood from healthy donors [44,90,93,95,96]. For

this reason, PCR-based studies identifying MCV in

tumors or other diseases require confirmation-using tech-

niques less prone to experimental false positivity than

PCR (e.g. immunohistochemistry, Southern blotting).

Transmission is through a form of casual contact but

the precise mode is not known.

MCV—a new human carcinogen
In Feng et al.’s original description of MCV, 8 of 10 tumors

harbored MCV infection [6��] and this has been confirmed

through multiple studies worldwide. Of 2354 MCC tumors

examined in various settings, 1743 (74.2%) were positive

for MCV (Supplementary Table 1). Little is known about

the cause of MCV-negative MCC—although low MCV

VLP antibody levels in these patients makes a hit-and-run

event by MCV seem unlikely. Further, careful examin-

ation of MCV-negative MCC often reveals differences in

immunophenotype (e.g. CK20) and miRNA profiles

(unpublished results) from MCV-positive tumors, making

it likely that MCV-positive and MCV-negative MCC have

different histogeneses.
www.sciencedirect.com 
Evidence is now abundant that MCV is a component of

healthy skin flora that only rarely initiates tumorigenesis.

What are the factors that promote transformation of this

harmless agent into a cancer virus?

Immunity

Similar to other human tumor viruses, cell-mediated

immune (CMI) surveillance is critical in suppressing

Merkel cell carcinoma formation and AIDS, post-trans-

plant and other immune-deficient populations are at

increased risk for MCC [19,24�]. The elevated risk among

the elderly is also consistent with age-related loss of

immune surveillance having a critical role in promoting

MCC [32]. Tumor infiltrating lymphocytes are a common

feature of MCV-positive tumors [97] and virus-specific

CD8+ and CD4+ T cells have been isolated from MCC

[98�]. The immune defect contributing to MCC may be

subtle, however, Iyer et al. have shown virus-reactive T

cell responses for both MCC patients and healthy volun-

teers [98�]. Reports of spontaneous MCC remission may

reflect reconstitution of CMI against tumor antigens [99]

and provides hope for adoptive immunotherapies in the

treatment of this cancer.

Persistence and loss of MCV replication

MCV, when present, is nearly uniformly integrated into

MCC genomes [6��,49]. Whether integration occurs spon-

taneously or requires exogenous mutagenesis, such as UV

exposure, is unknown. One possibility is that loss of

immune surveillance allows active MCV replication, lead-

ing to nonhomologous recombination of genome replica-

tion fragments that generate the integrated virus in the

proto-tumor cell. This is an appealing explanation for why

MCV-positive MCC patients have high capsid antibody

titers, but no direct evidence for this is currently exists.

Regardless of how viral integration occurs, expression of

T antigen will lead to unlicensed viral DNA replication

from a viral origin fused into the human genome—a

potential catastrophe for the nascent tumor cell. Precise

and independent mutations eliminating the T antigen

replication capacity, without disturbing oncogenic

domains, are also required for MCC cell survival. Each

successive step in this evolutionary process—loss of

immune surveillance, virus integration and T antigen

mutation—are required for MCC formation but are

uncommon. Thus, rare tumors can emerge from infection

with this common skin infection.

MCV oncoprotein expression

Knockdown experiments show that MCV LT and sT

oncoproteins are needed for MCV-positive tumor cell sur-

vival and replication once MCV integrates. These exper-

iments provide critical support for MCV being the causative

agent for MCV positive MCC [18�,62,63�]. Research on how

these proteins contribute to tumorigenesis has progressed
Current Opinion in Virology 2012, 2:489–498
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Figure 4
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Survivin inhibition improves survival of mice bearing human MCC xenografts. Survival curves are shown for mice with MCC xenografts and treated with

YM155 (red line), bortezomib (blue line) or saline (green line) for three weeks. MCV positive MKL-1 cells were injected into immune deficient mice and

the three-week treatment was given once tumors became palpable. Only 26–33% of bortezomib/saline-treated mice survived three weeks after

appearance of tumors while 100% of YM155-treated mice survived the treatment period. Tumors resumed growth once YM155 was discontinued

indicating a cytostatic rather than cytocidal effect for YM155 with short-term treatment.

Modified from Arora et al., STM, 2012.
rapidly because of the existing knowledge base gained from

other polyomaviruses.

The importance of understanding the molecular causes

for MCC is not limited to basic science. New MCV

diagnostics help distinguish MCC from other closely

related neuroendocrine cancers and may help predict

the severity of the cancer when it does occur [27�,37�].
Even more importantly, these studies have prompted the

search for fundamental changes in therapy for this diffi-

cult-to-treat tumor. Interferons are being explored to

harness innate immune responses to this viral tumor

[13]. Examination of cellular genes activated by MCV

identified the BIRC5 gene encoding survivin oncoprotein

as being highly upregulated by MCV LT sequestration of

RB. This in turn led to examination of a small molecule

survivin inhibitor (YM155) as a potential therapy for

MCV-MCC [11��]. YM155 inhibits MCV-positive MCC

growth at nanomolar concentrations whereas a screen of

other 1360 drugs, including those in the NCI Oncology

Drug Set, revealed only one compound (bortezomib)

having similar potency. Early MCC xenograft studies
Current Opinion in Virology 2012, 2:489–498 
(Figure 4) reveal that YM155 prolongs survival of mice

bearing MCC tumors [11��]. An Eastern Cooperative

Oncology Group trial is slated to open in late 2012 to

test efficacy of survivin inhibition in MCC. Thus, MCC

has progressed from being a cancer with no known

etiology and ‘‘More deaths but still no pathway to blame’’

[30�] to having rationally targeted molecular therapeutic

trials based on its viral etiology, in just four years.

The pace of MCV and MCC research has been rapid and

is only growing faster. Speed records for research on virus

discovery, viral oncogene studies, and ‘bench-to-bedside’

research have been broken in the MCV field but it is still

at a very early stage. Ever since the discovery of Epstein-

Barr virus in 1964, discovery of each new human tumor

virus has led to new and fundamental insights into car-

cinogenesis. MCV and related human polyomaviruses

hold open the promise to continue this scientific tradition.
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